History of the Discover of Light

In this timeline we will expose the history of the discovery of light. We will talk about the scientist and their investigation of the nature an propagation of light.

This is an essay for Technicals Media of RA 1

1600-07-01 00:00:00

Teory of Light

Aristotle was a Greek philosopher and polymath, a student of Plato and teacher of Alexander the Great. His studies covered many different subjects, to name a few; physics, metaphysics, poetry, theater, music, logic, rhetoric, linguistics, politics, government, ethics, biology, and zoology. The one I will be covering today is his study on light, where he is famous and responsible for one of the first theories of light.

1608-07-01 00:00:00

Telescope

In Venice on a holiday in 1608, Galileo Galilei heard rumors that a Dutch spectacle-maker had invented a device that made distant objects seem near at hand (at first called the spyglass and later renamed the telescope). A patent had been requested, but not yet granted, and the methods were being kept secret, since it was obviously of tremendous military value for Holland. Galileo Galilei - Spyglass Galileo Galilei was determined to attempt to construct his own spyglass. After a frantic 24 hours of experimentation, working only on instinct and bits of rumors, never having actually *seen* the Dutch spyglass, he built a 3-power telescope. After some refinement, he brought a 10-power telescope to Venice and demonstrated it to a highly impressed Senate. His salary was promptly raised, and he was honored with proclamations.

1621-12-09 00:00:00

the law of refraction

Snell's law gives the relationship between angles of incidence and refraction for a wave impinging on an interface between two media with different indices of refraction. The law follows from the boundary condition that a wave be continuous across a boundary, which requires that the phase of the wave be constant on any given plane, resulting in formulation, where and are the angles from the normal of the incident and refracted waves, respectively.

1660-08-01 02:41:55

PHENOMENON OF DIFRACTION

Robert Hooke, (born July 18, 1635—died March 3, 1703), Hooke, Robert: Hooke’s law of elasticity of materials.English physicist who discovered the law of elasticity, known as Hooke’s law, and who did research in a remarkable variety of fields. In 1655 Hooke was employed by Robert Boyle to construct the Boylean air pump. Five years later, Hooke discovered his law of elasticity, which states that the stretching of a solid body (e.g., metal, wood) is proportional to the force applied to it. The law laid the basis for studies of stress and strain and for understanding of elastic materials. He applied these studies in his designs for the balance springs of watches. In 1662 he was appointed curator of experiments to the Royal Society of London and was elected a fellow the following year.

1665-12-01 00:00:00

phenomenon of difraction

Francesco María Grimaldi introduced a pencil of light into a dark room. The shadow cast by a rod held in the cone of light was allowed to fall upon a white surface. To his surprise he found the shadow wider than the computed geometrical shadow; moreover, it was bordered by one, two, and sometimes three colored bands. In 1665 Grimaldi published his results: When the light is incident on a smooth white surface it will show an illuminated base IK notably greater than the rays would make which are transmitted in straight lines through the two holes. This is proved as often as the experiment is tried by observing how great the base IK is in fact and deducing by calculation how great the base NO ought to be which is formed by the direct rays. Further it should not be omitted that the illuminated base IK appears in the middle suffused with pure light, and at either extremity its light is colored.

1675-08-01 00:00:00

THE CORPUSCULAR THEORY OF LIGHT

The Corpuscular Theory of Light Newton proposed this theory that treats light as being composed of tiny particles. We use this theory to describe reflection. While the theory can explain the primary and secondary rainbows, it cannot explain the supernumerary bow, the corona, or an iridescent cloud.

1690-08-01 00:00:00

HUYGENS UNDULATORY THEORY

Christian Huygens was a Dutch physicist, mathematician, astronomer, and inventor who was the leading proponent of the wave theory of light. He also made important contributions to mechanics, stating that in a collision between bodies, neither loses nor gains "motion'' (his term for momentum). In astronomy, he discovered Titan (Saturn's largest moon) and was the first to correctly identify the observed elongation of Saturn as the presence of Saturn's rings. In 1689, he traveled to England in order to meet with Isaac Newton, whose Principia had been published in 1687. Christian Huygens fully recognized the intellectual merits of the work, however, he thought that Newton's theory was incomplete because it did not explain gravitation by any mechanical means. In 1690, Christian Huygens published his treatise on light in which the undulatory theory was expounded and explained. The general idea of the theory had been suggested by Robert Hooke in 1664, however, not in great detail. Up to that point in time, only three theories have been suggested about the mechanics of light. Either the eye sent out something, which feels the object (as the Greeks believed); or the object perceived sent out something which hits or affects the eye (as assumed in the emission theory); or there was some medium between the eye and the object, and the object caused changes in the form or condition of this intervening medium affecting the eye (as Robert Hooke and Christian Huygens supposed in the wave or undulatory theory). According to this last theory space is filled with an extremely rare ether, and light is caused by a series of waves or vibrations in this ether, which are set in motion by the pulsations of the luminous body. From this third theory, Christian Huygens deduced the laws of reflection and refraction, explained the phenomenon of double refraction, and gave a construction for the extraordinary ray in biaxial crystals; while he found by experiment the chief phenomena of polarization.

1801-07-27 15:22:08

thomas young superposition principle

In the early 1800's (1801 to 1805, depending on the source),Thomas Young performed his famous double slit experiment which seemed to prove that light was a wave. This experiment had profound implications, determining most of nineteenth century physics and resulting in several attempts to discover the ether, or the medium of light propagation. Though the experiment is most notable with light, the fact is that this sort of experiment can be performed with any type of wave, such as water. For the moment, however, we'll focus on the behavior of light.

1815-12-09 00:21:39

augustin jean fresnel mechanic theory

Augustin-Jean Fresnel (May 10, 1788 – July 14, 1827), was a French physicist who by his theories and discoveries advanced support for the wave theory of light. He invented a specialized lens that was used to intensify the light in lighthouses. On the second restoration of the monarchy, Fresnel obtained a post as engineer for the roads of Paris. His researches in optics appear to have been begun about the year 1814, when he prepared a paper on the aberration of light, which, however, was not published because its details appeared to have already been brought to light by earlier investigators. At that time, he began studying the phenomenon called polarized light, which would be the subject of many of his later researches and discoveries. In 1818, he wrote a memoir on diffraction for which in the ensuing year he received the prize of the Académie des Sciences at Paris. During this time, he also began investigations on a lens assembled from prisms of glass for use as an amplifier of light in lighthouses. He demonstrated this lens and its light intensification powers in 1821, when it was used to establish the distances between points on the British and French sides of the English Channel. Fresnel and Francois Arago developed a brighter lamp, now called the Fresnel lamp, to use in conjunction with the improved lens. In 1822, he presented a memoir before the French Academy of Sciences on his new system and its use in lighthouses, generously offering credit to other scientists who had described similar systems. In 1823, his lamp and lens was installed in the first lighthouse, the construction of which was underwritten by the French government. Fresnel was appointed secretary of lighthouses for the French government, a post which he held concurrently with his engineering position. In the same year, Fresnel was unanimously elected a member of the French Academy of Sciences, and in 1825, he became a foreign member of the Royal Society of London.

1845-12-09 04:05:07

michael faraday polarized light

Michael Faraday, who became one of the greatest scientists of the 19th century, began his career as a chemist. He wrote a manual of practical chemistry that reveals his mastery of the technical aspects of his art, discovered a number of new organic compounds, among them benzene, and was the first to liquefy a "permanent" gas (i.e., one that was believed to be incapable of liquefaction). His major contribution, however, was in the field of electricity and magnetism. He was the first to produce an electric current from a magnetic field, invented the first electric motor and dynamo, demonstrated the relation between electricity and chemical bonding, discovered the effect of magnetism on light, and discovered and named diamagnetism, the peculiar behaviour of certain substances in strong magnetic fields. He provided the experimental, and a good deal of the theoretical, foundation upon which James Clerk Maxwell erected classical electromagnetic field theory. Michael Faraday was born on September 22, 1791, in the country village of Newington, Surrey, now a part of South London. His father was a blacksmith who had migrated from the north of England earlier in 1791 to look for work. His mother was a country woman of great calm and wisdom who supported her son emotionally through a difficult childhood. Faraday was one of four children, all of whom were hard put to get enough to eat, since their father was often ill and incapable of working steadily. Faraday later recalled being given one loaf of bread that had to last him for a week. The family belonged to a small Christian sect, called Sandemanians, that provided spiritual sustenance to Faraday throughout his life. It was the single most important influence upon him and strongly affected the way in which he approached and interpreted nature. Faraday received only the rudiments of an education, learning to read, write, and cipher in a church Sunday school. At an early age he began to earn money by delivering newspapers for a book dealer and bookbinder, and at the age of 14 he was apprenticed to the man. Unlike the other apprentices, Faraday took the opportunity to read some of the books brought in for rebinding. The article on electricity in the third edition of the Encyclopdia Britannica particularly fascinated him. Using old bottles and lumber, he made a crude electrostatic generator and did simple experiments. He also built a weak voltaic pile with which he performed experiments in electrochemistry. Faraday's great opportunity came when he was offered a ticket to attend chemical lectures by Sir Humphry Davy at the Royal Institution of Great Britain in London. Faraday went, sat absorbed with it all, recorded the lectures in his notes, and returned to bookbinding with the seemingly unrealizable hope of entering the temple of science. He sent a bound copy of his notes to Davy along with a letter asking for employment, but there was no opening. Davy did not forget, however, and, when one of his laboratory assistants was dismissed for brawling, he offered Faraday a job. Faraday began as Davy's laboratory assistant and learned chemistry at the elbow of one of the greatest practitioners of the day. It has been said, with some truth, that Faraday was Davy's greatest discovery. When Faraday joined Davy in 1812, Davy was in the process of revolutionizing the chemistry of the day. Antoine-Laurent Lavoisier, the Frenchman generally credited with founding modern chemistry, had effected his rearrangement of chemical knowledge in the 1770s and 1780s by insisting upon a few simple principles. Among these was that oxygen was a unique element, in that it was the only supporter of combustion and was also the element that lay at the basis of all acids. Davy, after having discovered sodium and potassium by using a powerful current from a galvanic battery to decompose oxides of these elements, turned to the decomposition of muriatic (hydrochloric) acid, one of the strongest acids known. The products of the decomposition were hydrogen and a green gas that supported combustion and that, when combined with water, produced an acid. Davy concluded that this gas was an element, to which he gave the name chlorine, and that there was no oxygen whatsoever in muriatic acid. Acidity, therefore, was not the result of the presence of an acid-forming element but of some other condition. What else could that condition be but the physical form of the acid molecule itself? Davy suggested, then, that chemical properties were determined not by specific elements alone but also by the ways in which these elements were arranged in molecules. In arriving at this view he was influenced by an atomic theory that was also to have important consequences for Faraday's thought. This theory, proposed in the 18th century by Ruggero Giuseppe Boscovich, argued that atoms were mathematical points surrounded by alternating fields of attractive and repulsive forces. A true element comprised a single such point, and chemical elements were composed of a number of such points, about which the resultant force fields could be quite complicated. Molecules, in turn, were built up of these elements, and the chemical qualities of both elements and compounds were the results of the final patterns of force surrounding clumps of point atoms. One property of such atoms and molecules should be specifically noted: they can be placed under considerable strain, or tension, before the "bonds" holding them together are broken. These strains were to be central to Faraday's ideas about electricity. Faraday's second apprenticeship, under Davy, came to an end in 1820. By then he had learned chemistry as thoroughly as anyone alive. He had also had ample opportunity to practice chemical analyses and laboratory techniques to the point of complete mastery, and he had developed his theoretical views to the point that they could guide him in his researches. There followed a series of discoveries that astonished the scientific world. Faraday achieved his early renown as a chemist. His reputation as an analytical chemist led to his being called as an expert witness in legal trials and to the building up of a clientele whose fees helped to support the Royal Institution. In 1820 he produced the first known compounds of carbon and chlorine, C2Cl6 and C2Cl4. These compounds were produced by substituting chlorine for hydrogen in "olefiant gas" (ethylene), the first substitution reactions induced. (Such reactions later would serve to challenge the dominant theory of chemical combination proposed by Jns Jacob Berzelius.) In 1825, as a result of research on illuminating gases, Faraday isolated and described benzene. In the 1820s he also conducted investigations of steel alloys, helping to lay the foundations for scientific metallurgy and metallography. While completing an assignment from the Royal Society of London to improve the quality of optical glass for telescopes, he produced a glass of very high refractive index that was to lead him, in 1845, to the discovery of diamagnetism. In 1821 he married Sarah Barnard, settled permanently at the Royal Institution, and began the series of researches on electricity and magnetism that was to revolutionize physics. In 1820 Hans Christian rsted had announced the discovery that the flow of an electric current through a wire produced a magnetic field around the wire. Andr-Marie Ampre showed that the magnetic force apparently was a circular one, producing in effect a cylinder of magnetism around the wire. No such circular force had ever before been observed, and Faraday was the first to understand what it implied. If a magnetic pole could be isolated, it ought to move constantly in a circle around a current-carrying wire. Faraday's ingenuity and laboratory skill enabled him to construct an apparatus that confirmed this conclusion. This device, which transformed electrical energy into mechanical energy, was the first electric motor. This discovery led Faraday to contemplate the nature of electricity. Unlike his contemporaries, he was not convinced that electricity was a material fluid that flowed through wires like water through a pipe. Instead, he thought of it as a vibration or force that was somehow transmitted as the result of tensions created in the conductor. One of his first experiments after his discovery of electromagnetic rotation was to pass a ray of polarized light through a solution in which electrochemical decomposition was taking place in order to detect the intermolecular strains that he thought must be produced by the passage of an electric current. During the 1820s he kept coming back to this idea, but always without result. In the spring of 1831 Faraday began to work with Charles (later Sir Charles) Wheatstone on the theory of sound, another vibrational phenomenon. He was particularly fascinated by the patterns (known as Chladni figures) formed in light powder spread on iron plates when these plates were thrown into vibration by a violin bow. Here was demonstrated the ability of a dynamic cause to create a static effect, something he was convinced happened in a current-carrying wire. He was even more impressed by the fact that such patterns could be induced in one plate by bowing another nearby. Such acoustic induction is apparently what lay behind his most famous experiment. On August 29, 1831, Faraday wound a thick iron ring on one side with insulated wire that was connected to a battery. He then wound the opposite side with wire connected to a galvanometer. What he expected was that a "wave" would be produced when the battery circuit was closed and that the wave would show up as a deflection of the galvanometer in the second circuit. He closed the primary circuit and, to his delight and satisfaction, saw the galvanometer needle jump. A current had been induced in the secondary coil by one in the primary. When he opened the circuit, however, he was astonished to see the galvanometer jump in the opposite direction. Somehow, turning off the current also created an induced current in the secondary circuit, equal and opposite to the original current. This phenomenon led Faraday to propose what he called the "electrotonic" state of particles in the wire, which he considered a state of tension. A current thus appeared to be the setting up of such a state of tension or the collapse of such a state. Although he could not find experimental evidence for the electrotonic state, he never entirely abandoned the concept, and it shaped most of his later work. In the fall of 1831 Faraday attempted to determine just how an induced current was produced. His original experiment had involved a powerful electromagnet, created by the winding of the primary coil. He now tried to create a current by using a permanent magnet. He discovered that when a permanent magnet was moved in and out of a coil of wire a current was induced in the coil. Magnets, he knew, were surrounded by forces that could be made visible by the simple expedient of sprinkling iron filings on a card held over them. Faraday saw the "lines of force" thus revealed as lines of tension in the medium, namely air, surrounding the magnet, and he soon discovered the law determining the production of electric currents by magnets: the magnitude of the current was dependent upon the number of lines of force cut by the conductor in unit time. He immediately realized that a continuous current could be produced by rotating a copper disk between the poles of a powerful magnet and taking leads off the disk's rim and centre. The outside of the disk would cut more lines than would the inside, and there would thus be a continuous current produced in the circuit linking the rim to the centre. This was the first dynamo. It was also the direct ancestor of electric motors, for it was only necessary to reverse the situation, to feed an electric current to the disk, to make it rotate. While Faraday was performing these experiments and presenting them to the scientific world, doubts were raised about the identity of the different manifestations of electricity that had been studied. Were the electric "fluid" that apparently was released by electric eels and other electric fishes, that produced by a static electricity generator, that of the voltaic battery, and that of the new electromagnetic generator all the same? Or were they different fluids following different laws? Faraday was convinced that they were not fluids at all but forms of the same force, yet he recognized that this identity had never been satisfactorily shown by experiment. For this reason he began, in 1832, what promised to be a rather tedious attempt to prove that all electricities had precisely the same properties and caused precisely the same effects. The key effect was electrochemical decomposition. Voltaic and electromagnetic electricity posed no problems, but static electricity did. As Faraday delved deeper into the problem, he made two startling discoveries. First, electrical force did not, as had long been supposed, act at a distance upon chemical molecules to cause them to dissociate. It was the passage of electricity through a conducting liquid medium that caused the molecules to dissociate, even when the electricity merely discharged into the air and did not pass into a "pole" or "centre of action" in a voltaic cell. Second, the amount of the decomposition was found to be related in a simple manner to the amount of electricity that passed through the solution. These findings led Faraday to a new theory of electrochemistry. The electric force, he argued, threw the molecules of a solution into a state of tension (his electrotonic state). When the force was strong enough to distort the fields of forces that held the molecules together so as to permit the interaction of these fields with neighbouring particles, the tension was relieved by the migration of particles along the lines of tension, the different species of atoms migrating in opposite directions. The amount of electricity that passed, then, was clearly related to the chemical affinities of the substances in solution. These experiments led directly to Faraday's two laws of electrochemistry: (1) The amount of a substance deposited on each electrode of an electrolytic cell is directly proportional to the quantity of electricity passed through the cell. (2) The quantities of different elements deposited by a given amount of electricity are in the ratio of their chemical equivalent weights. Faraday's work on electrochemistry provided him with an essential clue for the investigation of static electrical induction. Since the amount of electricity passed through the conducting medium of an electrolytic cell determined the amount of material deposited at the electrodes, why should not the amount of electricity induced in a nonconductor be dependent upon the material out of which it was made? In short, why should not every material have a specific inductive capacity? Every material does, and Faraday was the discoverer of this fact. By 1839 Faraday was able to bring forth a new and general theory of electrical action. Electricity, whatever it was, caused tensions to be created in matter. When these tensions were rapidly relieved (i.e., when bodies could not take much strain before "snapping" back), then what occurred was a rapid repetition of a cyclical buildup, breakdown, and buildup of tension that, like a wave, was passed along the substance. Such substances were called conductors. In electrochemical processes the rate of buildup and breakdown of the strain was proportional to the chemical affinities of the substances involved, but again the current was not a material flow but a wave pattern of tensions and their relief. Insulators were simply materials whose particles could take an extraordinary amount of strain before they snapped. Electrostatic charge in an isolated insulator was simply a measure of this accumulated strain. Thus, all electrical action was the result of forced strains in bodies. The strain on Faraday of eight years of sustained experimental and theoretical work was too much, and in 1839 his health broke down. For the next six years he did little creative science. Not until 1845 was he able to pick up the thread of his researches and extend his theoretical views. Since the very beginning of his scientific work, Faraday had believed in what he called the unity of the forces of nature. By this he meant that all the forces of nature were but manifestations of a single universal force and ought, therefore, to be convertible into one another. In 1846 he made public some of the speculations to which this view led him. A lecturer, scheduled to deliver one of the Friday evening discourses at the Royal Institution by which Faraday encouraged the popularization of science, panicked at the last minute and ran out, leaving Faraday with a packed lecture hall and no lecturer. On the spur of the moment, Faraday offered "Thoughts on Ray Vibrations." Specifically referring to point atoms and their infinite fields of force, he suggested that the lines of electric and magnetic force associated with these atoms might, in fact, serve as the medium by which light waves were propagated. Many years later, Maxwell was to build his electromagnetic field theory upon this speculation. When Faraday returned to active research in 1845, it was to tackle again a problem that had obsessed him for years, that of his hypothetical electrotonic state. He was still convinced that it must exist and that he simply had not yet discovered the means for detecting it. Once again he tried to find signs of intermolecular strain in substances through which electrical lines of force passed, but again with no success. It was at this time that a young Scot, William Thomson (later Lord Kelvin), wrote Faraday that he had studied Faraday's papers on electricity and magnetism and that he, too, was convinced that some kind of strain must exist. He suggested that Faraday experiment with magnetic lines of force, since these could be produced at much greater strengths than could electrostatic ones. Faraday took the suggestion, passed a beam of plane-polarized light through the optical glass of high refractive index that he had developed in the 1820s, and then turned on an electromagnet so that its lines of force ran parallel to the light ray. This time he was rewarded with success. The plane of polarization was rotated, indicating a strain in the molecules of the glass. But Faraday again noted an unexpected result. When he changed the direction of the ray of light, the rotation remained in the same direction, a fact that Faraday correctly interpreted as meaning that the strain was not in the molecules of the glass but in the magnetic lines of force. The direction of rotation of the plane of polarization depended solely upon the polarity of the lines of force; the glass served merely to detect the effect. This discovery confirmed Faraday's faith in the unity of forces, and he plunged onward, certain that all matter must exhibit some response to a magnetic field. To his surprise he found that this was in fact so, but in a peculiar way. Some substances, such as iron, nickel, cobalt, and oxygen, lined up in a magnetic field so that the long axes of their crystalline or molecular structures were parallel to the lines of force; others lined up perpendicular to the lines of force. Substances of the first class moved toward more intense magnetic fields; those of the second moved toward regions of less magnetic force. Faraday named the first group paramagnetics and the second diamagnetics. After further research he concluded that paramagnetics were bodies that conducted magnetic lines of force better than did the surrounding medium, whereas diamagnetics conducted them less well. By 1850 Faraday had evolved a radically new view of space and force. Space was not "nothing," the mere location of bodies and forces, but a medium capable of supporting the strains of electric and magnetic forces. The energies of the world were not localized in the particles from which these forces arose but rather were to be found in the space surrounding them. Thus was born field theory. As Maxwell later freely admitted, the basic ideas for his mathematical theory of electrical and magnetic fields came from Faraday; his contribution was to mathematize those ideas in the form of his classical field equations. From about 1855, Faraday's mind began to fail. He still did occasional experiments, one of which involved attempting to find an electrical effect of raising a heavy weight, since he felt that gravity, like magnetism, must be convertible into some other force, most likely electrical. This time he was disappointed in his expectations, and the Royal Society refused to publish his negative results. More and more, Faraday began to sink into senility. Queen Victoria rewarded his lifetime of devotion to science by granting him the use of a house at Hampton Court and even offered him the honour of a knighthood. Faraday gratefully accepted the cottage but rejected the knighthood; he would, he said, remain plain Mr. Faraday to the end. He died on August 25, 1867, and was buried in Highgate Cemetery, London, leaving as his monument a new conception of physical reality.

1865-12-09 04:05:07

maxwell theory of electromagnetism light

James Clerk Maxwell (1831-1879) Born in Edinburgh on 13th June 1831, Maxwell showed early signs of curiosity but was nicknamed "daftie" by his fellow pupils at Edinburgh Academy. Nevertheless, he sent his first paper to the Royal Society in Edinburgh at the age of 15 and entered Edinburgh University at age 16. He moved to Cambridge University in 1850 and graduated there in 1854. Maxwell became professor of natural philosophy at Marischal College Aberdeen in 1856 and in 1857 published a paper establishing that the rings of Saturn were clouds of dust. He moved to a professorial post in London in 1860 and while there, demonstrated colour photography for the first time (using a tartan ribbon). He also explained the movement of molecules in gases. Returning to Edinburgh in 1865 Maxwell worked on electricity and magnetism, propounding the electromagnetic theory of light and that electricity travels at the speed of light. His equations established that electricity and magnetism are aspects of the same entity - electromagnetism. He predicted the existence of radio waves in 1865, paving the way for radio, TV and electronics and so can be considered to be the father of electronics. His "Treatise on Electricity and Magnetism" containing the famous Maxwell equations was published in 1873. But it was only in 1887 when Heinrich Hertz discovered the existence of radio waves that his calculations became accepted. Nowadays, the Encyclopaedia Britannica describes his Treatise as "one of the most splendid monuments ever raised by the genius of one man." Maxwell proposed many other theories that weren't proved until long after his death. For instance he suggested that when a charged particle was accelerated, the radiation produced has the same velocity as that of light.

1887-12-09 04:05:07

michael-morley experiment

The Michelson–Morley experiment was performed in 1887 by Albert Michelson and Edward Morley at what is now Case Western Reserve University in Cleveland, Ohio.[1] It attempted to detect the relative motion of matter through the stationary luminiferous aether ("aether wind"). The negative results are generally considered to be the first strong evidence against the then prevalent aether theory, and initiated a line of research that eventually led to special relativity, in which the stationary aether concept has no role.[A 1] The experiment has been referred to as "the moving-off point for the theoretical aspects of the Second Scientific Revolution".[A 2] Michelson–Morley type experiments have been repeated many times with steadily increasing sensitivity. These include experiments from 1902 to 1905, and a series of experiments in the 1920s. In addition, recent resonator experiments have confirmed the absence of any aether wind at the 10−17 level.[2][3] Together with the Ives–Stilwell and Kennedy–Thorndike experiments, the Michelson–Morley experiment forms one of the fundamental tests of special relativity theory

History of the Discover of Light

Launch
Copy this timeline Login to copy this timeline 3d Game mode

Contact us

We'd love to hear from you. Please send questions or feedback to the below email addresses.

Before contacting us, you may wish to visit our FAQs page which has lots of useful info on Tiki-Toki.

We can be contacted by email at: hello@tiki-toki.com.

You can also follow us on twitter at twitter.com/tiki_toki.

If you are having any problems with Tiki-Toki, please contact us as at: help@tiki-toki.com

Close

Edit this timeline

Enter your name and the secret word given to you by the timeline's owner.

3-40 true Name must be at least three characters
3-40 true You need a secret word to edit this timeline

Checking details

Please check details and try again

Go
Close